Efficient Evolutionary Algorithm for solving Multiobjective Transportation Problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملSolving Multiobjective Optimization Problems using Evolutionary Algorithm
Being capable of finding a set of pareto–optimal solutions in a single run, which is a necessary feature for multi–criteria decision making, Evolutionary Algorithms (EAs) has attracted many researchers and practitioners to address the solution of Multiobjective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multiobjective...
متن کاملComparison of Multiobjective Evolutionary Algorithms for Solving Task Scheduling Problem
Defining multiple objectives for the task scheduling problem for generating efficient schedules at reduced computational times are of interest in recent days. The objectives such as makespan, average flow time, robustness and reliability of the schedule are considered for solving task scheduling problem. The task scheduling problem in heterogeneous distributed Computing systems (HDCS) is a mult...
متن کاملMultiobjective Evolutionary Algorithm Approach For Solving Integer Based Optimization Problems
Multiobjective Evolutionary algorithms (MOEAs) are often well-suited for complex combinatorial Multiobjective optimization problems (MOPs). Integer based MOPs are prevalent in real world applications where there exist a discrete amount of a component or quantity of an item. Presented here is the application of a building block based MOEA, the MOMGA-II, to a NP Complete problem and real-world ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Conference on Mathematics and Engineering Physics
سال: 2010
ISSN: 2636-4328
DOI: 10.21608/icmep.2010.29806